跳到主要内容

Generator 函数的语法

1.简介

1.1 基本概念

Generator 函数是 ES6 提供的一种异步编程的解决方案

理解:

状态机,封装了多个内部状态;

执行 Generator 函数会返回一个遍历器对象,也就是说:

  1. Generator 函数除了是状态机,还是一个遍历器对象生成函数。返回的遍历器对象可以依次遍历 Generator 函数内部的每一个状态。

形式上,Generator 函数是一个普通函数,但是有两个特征:

  1. function 命令与函数名之间有一个星号
  2. 函数体内部使用 yield 语句定义不同的内部状态。
function* func() {
yield 'hello'
yield 'houfee'
return 'ending'
}
let result = func()
console.log(result.next()) // {value: "hello", done: false}
console.log(result.next()) // {value: "houfee", done: false}
console.log(result.next()) // {value: "ending", done: true}
// 该函数内部有3个状态 'hello' 'houfee' 和 return
// 和 Iterator 接口相似

注意:

调用 Generator 函数,该函数并不执行,返回的是指向内部状态的指针对象(遍历器对象)

必须调用遍历器对象的next方法,使得指针移向下一个状态,

换言之,Generator 函数是分段执行的,yield 语句是暂停执行标记,而next方法可以恢复执行。

1.2 yield 表达式

由于 Generator 函数返回的遍历器对象只有调用 next 方法才会遍历下一个内部状态,所以其实提供了一个可以暂停执行的函数,yield 就是执行暂停标志。

遍历器对象的next方法的运行逻辑如下:

  1. 遇到yield语句就暂停执行后面的操作,并将紧跟在yield后的表达式的值作为返回的对象的value属性值。
  2. 下一次调用next方法时再继续往下运行,知道遇到吓一跳yield语句
  3. 如果没有遇到新的yield语句,就一直运行到函数结束,直到return语句为止,并将return语句后面的表达式的值作为返回对象的value属性值。
  4. 如果该函数没有return语句,则返回对象的value属性值为undefined。
function* func() {
yield 123 +456
}
let result = func() // 不会立即执行,只会在next方法将指针移到这一句时才求值
console.log(result.next()) // {value: 579, done: false}
console.log(result.next()) // {value: undefined, done: true}
console.log(result.next()) // {value: undefined, done: true}

当 Generator函数 不使用 yield 语句时:

function* func() {
console.log(123 + 456)
}
let result = func()
setTimeout(() => {
result.next() // 5s 后打印 579
}, 5000)

注意:

yield表达式只能用在 Generator 函数里面,用在其他地方会报错。

forEach 内部不是使用 yield,而 for 可以:

var arr = [1, [[2, 3], 4], 5, 6]
var flat = function*(a) {
a.forEach(element => {
if(typeof element !== 'number') {
yield* flat(element)
} else {
yield element
}
});
}
for(var f of flat(arr)) {
console.log(f) // Uncaught SyntaxError: Unexpected identifier
}
var arr = [1, [[2, 3], 4], 5, 6]
var flat = function* (a) {
for(var i = 0; i < a.length; i++) {
var element = a[i]
if(typeof element !== 'number') {
yield* flat(element)
} else {
yield element
}
}
}
for(var f of flat(arr)) {
console.log(f) // 1 2 3 4 5 6
}

另外,yield表达式如果用在另一个表达式中,必须放在圆括号中。

function* demo() {
console.log('holle' + yield); // 报错
console.log('holle' + yield 123); // 报错
console.log('holle' + (yield));
console.log('holle' + (yield 123));
}

yield表达式用作函数参数或放在赋值表达式式的右边,可以不加括号:

function* demo() {
foo(yield 'a', yield 'b')
let input = yield
}

1.3 与 Iterator 接口的关系

任意一个对象的 Symbol.iterator 方法,等于该对象的遍历器生成函数,调用该函数会返回该对象的一个遍历器对象。

由于 Generator 函数就是遍历器生成函数,因此可以把 Generator 赋值给对象的 Symbol.iterator 属性,从而使得该对象具有 Iterator 接口。

var myIterable = {};
myIterable[Symbol.iterator] = function* () {
yield 1;
yield 2;
yield 3;
};
console.log([...myIterable]) // [1, 2, 3]
// Generator 函数赋值给 Symbol.iterator 属性,从而使得 myIterable 对象具有了 Iterator 接口,可以被 ... 运算符遍历了。

Generator 函数执行后,返回一个遍历器对象。该对象本身也具有 Symbol.iterator 属性,执行后返回自身。

function* gen(){
// some code
}
var g = gen();
console.log(g[Symbol.iterator]()) // gen {<suspended>}
console.log(g[Symbol.iterator]() === g) // true

上面代码中, gen 是一个 Generator 函数,调用它会生成一个遍历器对象 g 。它的 Symbol.iterator 属性,也是一个遍历器对象生成函数,执行后返回它自己。

2. next方法的参数

yield 表达式本身没有返回值,或者说总是返回 undefined 。 next 方法可以带一个参数,该参数就会被当作上一个 yield 表达式的返回值。

function* f() {
for (var i = 0; true; i++) {
var reset = yield i;
console.log(i) // 0 1
console.log(reset) // undefined true
if (reset) {
i = -1;
}
}
}
var g = f();
console.log(g.next()); // { value: 0, done: false }
console.log(g.next()); // { value: 1, done: false }
console.log(g.next(true)); // { value: 0, done: false }

执行:

上面代码先定义了一个可以无限运行的 Generator 函数 f ,

如果 next 方法没有参数,每次运行到 yield 表达式,变量 reset 的值总是 undefined 。

当 next 方法带一个参数 true 时,变量 reset 就被重置为这个参数(即 true ),

因此 i 会等于 -1 ,下一轮循环就会从 -1 开始递增。

这个功能有很重要的语法意义。Generator 函数从暂停状态到恢复运行,它的上下文状态(context)是不变的。通过 next 方法的参数,就有办法在Generator 函数开始运行之后,继续向函数体内部注入值。也就是说,可以在 Generator 函数运行的不同阶段,从外部向内部注入不同的值,从而调整函数行为。

function* foo(x) {
var y = 2 * (yield(x + 1));
var z = yield(y / 3);
return (x + y + z);
}
var a = foo(5);
a.next() // Object{value:6, done:false}
a.next() // Object{value:NaN, done:false}
a.next() // Object{value:NaN, done:true}
var b = foo(5);
b.next() // { value:6, done:false }
b.next(12) // { value:8, done:false }
b.next(13) // { value:42, done:true }
  1. 上面代码中,第二次运行 next 方法的时候不带参数,导致 y 的值等于 2 * undefined (即 NaN ),除以 3 以后还是 NaN ,因此返回对象的 value 属性也等于 NaN 。
  2. 第三次运行 Next 方法的时候不带参数,所以 z 等于 undefined ,返回对象的 value 属性等于 5 + NaN + undefined ,即 NaN 。

如果向 next 方法提供参数,返回结果就完全不一样了:

  1. 上面代码第一次调用 b 的 next 方法时,返回 x+1 的值 6 ;
  2. 第二次调用 next 方法,将上一次 yield 表达式的值设为 12 ,因此 y 等于 24 ,返回 y / 3 的值 8 ;
  3. 第三次调用 next 方法,将上一次 yield 表达式的值设为 13 ,因此 z 等于 13 ,这时 x 等于 5 ,y 等于 24 ,所以 return 语句的值等于 42 。

注意,由于 next 方法的参数表示上一个 yield 表达式的返回值,所以在第一次使用 next 方法时,传递参数是无效的。V8 引擎直接忽略第一次使用 next 方法时的参数,只有从第二次使用 next 方法开始,参数才是有效的。从语义上讲,第一个 next 方法用来启动遍历器对象,所以不用带有参数。

通过 next 方法的参数,向 Generator 函数内部输入值的例子:

function* dataConsumer() {
console.log('Started');
console.log(`1. ${yield}`);
console.log(`2. ${yield}`);
return 'result';
}
let genObj = dataConsumer();
console.log(genObj.next()); // Started // {value: undefined, done: false}
console.log(genObj.next('a')); // 1. a // {value: undefined, done: false}
console.log(genObj.next('b')); // 2. b // {value: "result", done: true}

上面代码是每次通过 next 方法向 Generator 函数输入值,然后打印出来。

如果想要第一次调用 next 方法时,就能够输入值,可以在 Generator 函数外面再包一层。

function wrapper(generatorFunction) {
return function(...args) {
let generatorObject = generatorFunction(...args);
generatorObject.next();
return generatorObject;
};
}
const wrapped = wrapper(function*() {
console.log(`First input: ${yield}`);
return 'DONE';
});
wrapped().next('hello!') // First input: hello!

上面代码中,Generator 函数如果不用 wrapper 先包一层,是无法第一次调用 next 方法,就输入参数的。

3. for...of循环

for...of 循环可以自动遍历 Generator 函数时生成的 Iterator 对象,且此时不再需要调用 next 方法。

function *foo() {
yield 1;
yield 2;
yield 3;
yield 4;
yield 5;
return 6;
}
for (let v of foo()) {
console.log(v);
}
// 1 2 3 4 5

上面代码使用 for...of 循环,依次显示 5 个 yield 表达式的值。这里需要注意,一旦 next 方法的返回对象的 done 属性为 true , for...of 循环就会中止,且不包含该返回对象,所以上面代码的 return 语句返回的 6 ,不包括在 for...of 循环之中。

个利用 Generator 函数和 for...of 循环,实现斐波那契数列:

function* fibonacci() {
let [prev, curr] = [0, 1];
for (;;) {
[prev, curr] = [curr, prev + curr];
yield curr;
}
}
for (let n of fibonacci()) {
if (n > 1000) break;
console.log(n);
}

从上面代码可见,使用 for...of 语句时不需要使用 next 方法。

利用 for...of 循环,可以写出遍历任意对象(object)的方法。原生的 JavaScript 对象没有遍历接口,无法使用 for...of 循环,通过 Generator 函数为它加上这个接口,就可以用了。

function* objectEntries(obj) {
let propKeys = Reflect.ownKeys(obj);
for (let propKey of propKeys) {
yield [propKey, obj[propKey]];
}
}
let jane = {
first: 'Jane',
last: 'Doe'
};
for (let [key, value] of objectEntries(jane)) {
console.log(`${key}: ${value}`);
}
// first: Jane
// last: Doe

上面代码中,对象 jane 原生不具备 Iterator 接口,无法用 for...of 遍历。这时,我们通过 Generator 函数 objectEntries 为它加上遍历器接口,就可以用 for...of 遍历了。加上遍历器接口的另一种写法是,将Generator 函数加到对象的 Symbol.iterator 属性上面。

function* objectEntries() {
let propKeys = Object.keys(this);
for (let propKey of propKeys) {
yield [propKey, this[propKey]];
}
}
let jane = {
first: 'Jane',
last: 'Doe'
};
jane[Symbol.iterator] = objectEntries;
for (let [key, value] of jane) {
console.log(`${key}: ${value}`);
}
// first: Jane
// last: Doe

除了 for...of 循环以外,扩展运算符( ... )、解构赋值和 Array.from 方法内部调用的,都是遍历器接口。这意味着,它们都可以将 Generator 函数返回的 Iterator 对象,作为参数。

function* numbers () {
yield 1
yield 2
return 3
yield 4
}
// 扩展运算符
[...numbers()] // [1, 2]
// Array.from 方法
Array.from(numbers()) // [1, 2]
// 解构赋值
let [x, y] = numbers();
x // 1
y // 2
// for...of 循环
for (let n of numbers()) {
console.log(n)
}
// 1
// 2

第四到第九小结都没仔细看,看的脑壳痛,等用到时在看吧,哎!!! 😢


4. Generator.prototype.throw()

Generator 函数返回的遍历器对象,都有一个 throw 方法,可以在函数体外抛出错误,然后在 Generator 函数体内捕获。

var g = function*() {
try {
yield;
} catch (e) {
console.log('内部捕获', e);
}
};
var i = g();
i.next();
try {
i.throw('a');
i.throw('b');
} catch (e) {
console.log('外部捕获', e);
}
// 内部捕获 a
// 外部捕获 b

上面代码中,遍历器对象 i 连续抛出两个错误。第一个错误被 Generator 函数体内的 catch 语句捕获。 i 第二次抛出错误,由于 Generator 函数内部的 catch 语句已经执行过了,不会再捕捉到这个错误了,所以这个错误就被抛出了 Generator 函数体,被函数体外的 catch 语句捕获。

throw 方法可以接受一个参数,该参数会被 catch 语句接收,建议抛出 Error 对象的实例。

var g = function*() {
try {
yield;
} catch (e) {
console.log(e);
}
};
var i = g();
i.next();
i.throw(new Error('出错了!'));
// Error: 出错了!(…)

注意,不要混淆遍历器对象的 throw 方法和全局的 throw 命令。上面代码的错误,是用遍历器对象的 throw 方法抛出的,而不是用 throw 命令抛出的。后者只能被函数体外的 catch 语句捕获。

var g = function*() {
while (true) {
try {
yield;
} catch (e) {
if (e != 'a') throw e;
console.log('内部捕获', e);
}
}
};
var i = g();
i.next();
try {
throw new Error('a');
throw new Error('b');
} catch (e) {
console.log('外部捕获', e);
}
// 外部捕获 [Error: a]

上面代码之所以只捕获了 a ,是因为函数体外的 catch 语句块,捕获了抛出的 a 错误以后,就不会再继续 try 代码块里面剩余的语句了。

如果 Generator 函数内部没有部署 try...catch 代码块,那么 throw 方法抛出的错误,将被外部 try...catch 代码块捕获。

var g = function* () {
while (true) {
yield;
console.log('内部捕获', e);
}
};
var i = g();
i.next();
try {
i.throw('a');
i.throw('b');
} catch (e) {
console.log('外部捕获', e);
}
// 外部捕获 a

上面代码中,Generator 函数 g 内部没有部署 try...catch 代码块,所以抛出的错误直接被外部 catch 代码块捕获。

如果 Generator 函数内部和外部,都没有部署 try...catch 代码块,那么程序将报错,直接中断执行。

 yield console.log('hello');
yield console.log('world');
}
var g = gen();
g.next();
g.throw();
// hello
// Uncaught undefined

上面代码中, g.throw 抛出错误以后,没有任何 try...catch 代码块可以捕获这个错误,导致程序报错,中断执行。

throw 方法被捕获以后,会附带执行下一条 yield 表达式。也就是说,会附带执行一次 next 方法。

var gen = function* gen(){
try {
yield console.log('a');
} catch (e) {
// ...
}
yield console.log('b');
yield console.log('c');
}
var g = gen();
g.next() // a
g.throw() // b
g.next() // c

上面代码中, g.throw 方法被捕获以后,自动执行了一次 next 方法,所以会打印 b 。另外,也可以看到,只要 Generator 函数内部部署了 try...catch 代码块,那么遍历器的 throw 方法抛出的错误,不影响下一次遍历。

另外, throw 命令与 g.throw 方法是无关的,两者互不影响。

var gen = function* gen(){
yield console.log('hello');
yield console.log('world');
}
var g = gen();
g.next();
try {
throw new Error();
} catch (e) {
g.next();
}
// hello
// world

上面代码中, throw 命令抛出的错误不会影响到遍历器的状态,所以两次执行 next 方法,都进行了正确的操作。

这种函数体内捕获错误的机制,大大方便了对错误的处理。多个 yield 表达式,可以只用一个 try...catch 代码块来捕获错误。如果使用回调函数的写法,想要捕获多个错误,就不得不为每个函数内部写一个错误处理语句,现在只在 Generator 函数内部写一次 catch 语句就可以了。

Generator 函数体外抛出的错误,可以在函数体内捕获;反过来,Generator 函数体内抛出的错误,也可以被函数体外的 catch 捕获。

function* foo() {
var x = yield 3;
var y = x.toUpperCase();
yield y;
}
var it = foo();
it.next(); // { value:3, done:false }
try {
it.next(42);
} catch (err) {
console.log(err);
}

上面代码中,第二个 next 方法向函数体内传入一个参数 42,数值是没有 toUpperCase 方法的,所以会抛出一个 TypeError 错误,被函数体外的 catch 捕获。

一旦 Generator 执行过程中抛出错误,且没有被内部捕获,就不会再执行下去了。如果此后还调用 next 方法,将返回一个 value 属性等于 undefined 、done 属性等于 true 的对象,即 JavaScript 引擎认为这个 Generator 已经运行结束了。

function* g() {
yield 1;
console.log('throwing an exception');
throw new Error('generator broke!');
yield 2;
yield 3;
}
function log(generator) {
var v;
console.log('starting generator');
try {
v = generator.next();
console.log('第一次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
try {
v = generator.next();
console.log('第二次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
try {
v = generator.next();
console.log('第三次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
console.log('caller done');
}
log(g());
// starting generator
// 第一次运行next方法 { value: 1, done: false }
// throwing an exception
// 捕捉错误 { value: 1, done: false }
// 第三次运行next方法 { value: undefined, done: true }
// caller done

上面代码一共三次运行 next 方法,第二次运行的时候会抛出错误,然后第三次运行的时候,Generator 函数就已经结束了,不再执行下去了。

5. Generator.prototype.retrun()

Generator 函数返回的遍历器对象,还有一个 return 方法,可以返回给定的值,并且终结遍历 Generator 函数。

function* gen() {
yield 1;
yield 2;
yield 3;
}
var g = gen();
g.next() // { value: 1, done: false }
g.return('foo') // { value: "foo", done: true }
g.next() // { value: undefined, done: true }

上面代码中,遍历器对象 g 调用 return 方法后,返回值的 value 属性就是 return 方法的参数 foo 。并且,Generator 函数的遍历就终止了,返回值的 done 属性为 true ,以后再调用 next 方法, done 属性总是返回 true 。 如果 return 方法调用时,不提供参数,则返回值的 value 属性为 undefined 。

function* gen() {
yield 1;
yield 2;
yield 3;
}
var g = gen();
g.next() // { value: 1, done: false }
g.return() // { value: undefined, done: true }

如果 Generator 函数内部有 try...finally 代码块,那么 return 方法会推迟到 finally 代码块执行完再执行。

function* numbers () {
yield 1;
try {
yield 2;
yield 3;
} finally {
yield 4;
yield 5;
}
yield 6;
}
var g = numbers();
g.next() // { value: 1, done: false }
g.next() // { value: 2, done: false }
g.return(7) // { value: 4, done: false }
g.next() // { value: 5, done: false }
g.next() // { value: 7, done: true }

上面代码中,调用 return 方法后,就开始执行 finally 代码块,然后等到 finally 代码块执行完,再执行 return 方法。

6. next()、throw()、return() 的共同点

next() 、 throw() 、 return() 这三个方法本质上是同一件事,可以放在一起理解。它们的作用都是让 Generator 函数恢复执行,并且使用不同的语句替换 yield 表达式。

next() 是将 yield 表达式替换成一个值。

const g = function* (x, y) {
let result = yield x + y;
return result;
};
const gen = g(1, 2);
gen.next(); // Object {value: 3, done: false}
gen.next(1); // Object {value: 1, done: true}
// 相当于将 let result = yield x + y
// 替换成 let result = 1;

上面代码中,第二个 next(1) 方法就相当于将 yield 表达式替换成一个值 1 。如果 next 方法没有参数,就相当于替换成 undefined 。

throw() 是将 yield 表达式替换成一个 throw 语句。

gen.throw(new Error('出错了')); // Uncaught Error: 出错了
// 相当于将 let result = yield x + y
// 替换成 let result = throw(new Error('出错了'));

return() 是将 yield 表达式替换成一个 return 语句。

gen.return(2); // Object {value: 2, done: true}
// 相当于将 let result = yield x + y
// 替换成 let result = return 2;

7. yield*表达式

如果在 Generator 函数内部,调用另一个 Generator 函数,默认情况下是没有效果的。

function* foo() {
yield 'a';
yield 'b';
}
function* bar() {
yield 'x';
foo();
yield 'y';
}
for (let v of bar()){
console.log(v);
}
// "x"
// "y"

上面代码中, foo 和 bar 都是 Generator 函数,在 bar 里面调用 foo ,是不会有效果的。 这个就需要用到 yield* 表达式,用来在一个 Generator 函数里面执行另一个 Generator 函数。

function* bar() {
yield 'x';
yield* foo();
yield 'y';
}
// 等同于
function* bar() {
yield 'x';
yield 'a';
yield 'b';
yield 'y';
}
// 等同于
function* bar() {
yield 'x';
for (let v of foo()) {
yield v;
}
yield 'y';
}
for (let v of bar()){
console.log(v); // x a b y
}
function* inner() {
yield 'hello!';
}
function* outer1() {
yield 'open';
yield inner();
yield 'close';
}
var gen = outer1()
gen.next().value // "open"
gen.next().value // 返回一个遍历器对象
gen.next().value // "close"
function* outer2() {
yield 'open'
yield* inner()
yield 'close'
}
var gen = outer2()
gen.next().value // "open"
gen.next().value // "hello!"
gen.next().value // "close"

上面例子中, outer2 使用了 yield* , outer1 没使用。结果就是, outer1 返回一个遍历器对象, outer2 返回该遍历器对象的内部值。

从语法角度看,如果 yield 表达式后面跟的是一个遍历器对象,需要在 yield 表达式后面加上星号,表明它返回的是一个遍历器对象。这被称为 yield* 表达式。

let delegatedIterator = (function* () {
yield 'Hello!';
yield 'Bye!';
}());
let delegatingIterator = (function* () {
yield 'Greetings!';
yield* delegatedIterator;
yield 'Ok, bye.';
}());
for(let value of delegatingIterator) {
console.log(value);
}
// "Greetings!
// "Hello!"
// "Bye!"
// "Ok, bye."

上面代码中, delegatingIterator 是代理者, delegatedIterator 是被代理者。由于 yield* delegatedIterator 语句得到的值,是一个遍历器,所以要用星号表示。运行结果就是使用一个遍历器,遍历了多个 Generator 函数,有递归的效果。

yield* 后面的 Generator 函数(没有 return 语句时),等同于在 Generator 函数内部,部署一个 for...of 循环。

function* concat(iter1, iter2) {
yield* iter1;
yield* iter2;
}
// 等同于
function* concat(iter1, iter2) {
for (var value of iter1) {
yield value;
}
for (var value of iter2) {
yield value;
}
}

上面代码说明, yield 后面的 Generator 函数(没有 return 语句时),不过是 for...of 的一种简写形式,完全可以用后者替代前者。反之,在有return 语句时,则需要用 var value = yield iterator 的形式获取 return 语句的值。

如果 yield* 后面跟着一个数组,由于数组原生支持遍历器,因此就会遍历数组成员。

function* gen(){
yield* ["a", "b", "c"];
}
gen().next() // { value:"a", done:false }

上面代码中, yield 命令后面如果不加星号,返回的是整个数组,加了星号就表示返回的是数组的遍历器对象。

实际上,任何数据结构只要有 Iterator 接口,就可以被 yield* 遍历。

let read = (function* () {
yield 'hello';
yield* 'hello';
})();
read.next().value // "hello"
read.next().value // "h"

上面代码中, yield 表达式返回整个字符串, yield 语句返回单个字符。因为字符串具有 Iterator 接口,所以被 yield 遍历。

如果被代理的 Generator 函数有 return 语句,那么就可以向代理它的 Generator 函数返回数据。

function *foo() {
yield 2;
yield 3;
return "foo";
}
function *bar() {
yield 1;
var v = yield *foo();
console.log( "v: " + v );
yield 4;
}
var it = bar();
it.next()
// {value: 1, done: false}
it.next()
// {value: 2, done: false}
it.next()
// {value: 3, done: false}
it.next();
// "v: foo"
// {value: 4, done: false}
it.next()
// {value: undefined, done: true}

上面代码在第四次调用 next 方法的时候,屏幕上会有输出,这是因为函数 foo 的 return 语句,向函数 bar 提供了返回值。

再看一个例子。

function* genFuncWithReturn() {
yield 'a';
yield 'b';
return 'The result';
}
function* logReturned(genObj) {
let result = yield* genObj;
console.log(result);
}
[...logReturned(genFuncWithReturn())]
// The result
// 值为 [ 'a', 'b' ]

上面代码中,存在两次遍历。第一次是扩展运算符遍历函数 logReturned 返回的遍历器对象,第二次是 yield* 语句遍历函数 genFuncWithReturn 返回的遍历器对象。这两次遍历的效果是叠加的,最终表现为扩展运算符遍历函数 genFuncWithReturn 返回的遍历器对象。所以,最后的数据表达式得到的值等于[ 'a', 'b' ] 。但是,函数 genFuncWithReturn 的 return 语句的返回值 The result ,会返回给函数 logReturned 内部的 result 变量,因此会有终端输出。

yield* 命令可以很方便地取出嵌套数组的所有成员。

function* iterTree(tree) {
if (Array.isArray(tree)) {
for(let i=0; i < tree.length; i++) {
yield* iterTree(tree[i]);
}
} else {
yield tree;
}
}
const tree = [ 'a', ['b', 'c'], ['d', 'e'] ];
for(let x of iterTree(tree)) {
console.log(x); // a b c d e
}

下面是一个稍微复杂的例子,使用 yield* 语句遍历完全二叉树。

// 下面是二叉树的构造函数,
// 三个参数分别是左树、当前节点和右树
function Tree(left, label, right) {
this.left = left;
this.label = label;
this.right = right;
}
// 下面是中序(inorder)遍历函数。
// 由于返回的是一个遍历器,所以要用generator函数。
// 函数体内采用递归算法,所以左树和右树要用yield*遍历
function* inorder(t) {
if (t) {
yield* inorder(t.left);
yield t.label;
yield* inorder(t.right);
}
}
// 下面生成二叉树
function make(array) {
// 判断是否为叶节点
if (array.length == 1) return new Tree(null, array[0], null);
return new Tree(make(array[0]), array[1], make(array[2]));
}
let tree = make([[['a'], 'b', ['c']], 'd', [['e'], 'f', ['g']]]);
// 遍历二叉树
var result = [];
for (let node of inorder(tree)) {
result.push(node);
}
result
// ['a', 'b', 'c', 'd', 'e', 'f', 'g']

8. 作为对象属性的 Generator 函数

如果一个对象的属性是 Generator 函数,可以简写成下面的形式。

let obj = {
* myGeneratorMethod() {
···
}
};

上面代码中, myGeneratorMethod 属性前面有一个星号,表示这个属性是一个 Generator 函数。

它的完整形式如下,与上面的写法是等价的。

let obj = {
myGeneratorMethod: function* () {
// ···
}
};

9. Generator 函数的this

Generator 函数总是返回一个遍历器,ES6 规定这个遍历器是 Generator 函数的实例,也继承了 Generator 函数的 prototype 对象上的方法。

function* g() {}
g.prototype.hello = function () {
return 'hi!';
};
let obj = g();
obj instanceof g // true
obj.hello() // 'hi!'

上面代码表明,Generator 函数 g 返回的遍历器 obj ,是 g 的实例,而且继承了 g.prototype 。但是,如果把 g 当作普通的构造函数,并不会生效,因为g 返回的总是遍历器对象,而不是 this 对象。

function* g() {
this.a = 11;
}
let obj = g();
obj.a // undefined

上面代码中,Generator 函数 g 在 this 对象上面添加了一个属性 a ,但是 obj 对象拿不到这个属性。

Generator 函数也不能跟 new 命令一起用,会报错。

function* F() {
yield this.x = 2;
yield this.y = 3;
}
new F()
// TypeError: F is not a constructor

上面代码中, new 命令跟构造函数 F 一起使用,结果报错,因为 F 不是构造函数。 那么,有没有办法让 Generator 函数返回一个正常的对象实例,既可以用 next 方法,又可以获得正常的 this ? 下面是一个变通方法。首先,生成一个空对象,使用 call 方法绑定 Generator 函数内部的 this 。这样,构造函数调用以后,这个空对象就是Generator 函数的实例对象了。

function* F() {
this.a = 1;
yield this.b = 2;
yield this.c = 3;
}
var obj = {};
var f = F.call(obj);
f.next(); // Object {value: 2, done: false}
f.next(); // Object {value: 3, done: false}
f.next(); // Object {value: undefined, done: true}
obj.a // 1
obj.b // 2
obj.c // 3

上面代码中,首先是 F 内部的 this 对象绑定 obj 对象,然后调用它,返回一个 Iterator 对象。这个对象执行三次 next 方法(因为 F 内部有两个 yield 表达式),完成 F 内部所有代码的运行。这时,所有内部属性都绑定在 obj 对象上了,因此 obj 对象也就成了 F 的实例。 上面代码中,执行的是遍历器对象 f ,但是生成的对象实例是 obj ,有没有办法将这两个对象统一呢? 一个办法就是将 obj 换成 F.prototype 。

function* F() {
this.a = 1;
yield this.b = 2;
yield this.c = 3;
}
var f = F.call(F.prototype);
f.next(); // Object {value: 2, done: false}
f.next(); // Object {value: 3, done: false}
f.next(); // Object {value: undefined, done: true}
f.a // 1
f.b // 2
f.c // 3

再将 F 改成构造函数,就可以对它执行 new 命令了。

function* gen() {
this.a = 1;
yield this.b = 2;
yield this.c = 3;
}
function F() {
return gen.call(gen.prototype);
}
var f = new F();
f.next(); // Object {value: 2, done: false}
f.next(); // Object {value: 3, done: false}
f.next(); // Object {value: undefined, done: true}
f.a // 1
f.b // 2
f.c // 3

10. 含义

10.1 Generator 与状态机

.Generator 是实现状态机的最佳结构。比如,下面的 clock 函数就是一个状态机。

var ticking = true;
var clock = function() {
if (ticking)
console.log('Tick!');
else
console.log('Tock!');
ticking = !ticking;
}
clock() // Tick!
clock() // Tock!
clock() // Tick!
clock() // Tock!
clock() // Tick!
clock() // Tock!
clock() // Tick!

上面代码的 clock 函数一共有两种状态( Tick 和 Tock ),每运行一次,就改变一次状态。这个函数如果用 Generator 实现,就是下面这样。

var clock = function* () {
while (true) {
console.log('Tick!');
yield;
console.log('Tock!');
yield;
}
};

上面的 Generator 实现与 ES5 实现对比,可以看到少了用来保存状态的外部变量 ticking ,这样就更简洁,更安全(状态不会被非法篡改)、更符合函数式编程的思想,在写法上也更优雅。Generator 之所以可以不用外部变量保存状态,是因为它本身就包含了一个状态信息,即目前是否处于暂停态。

10.2 Generator 与协程

协程(coroutine)是一种程序运行的方式,可以理解成“协作的线程”或“协作的函数”。协程既可以用单线程实现,也可以用多线程实现。前者是一种特殊的子例程,后者是一种特殊的线程。

(1)协程与子例程的差异

传统的“子例程”(subroutine)采用堆栈式“后进先出”的执行方式,只有当调用的子函数完全执行完毕,才会结束执行父函数。协程与其不同,多个线程(单线程情况下,即多个函数)可以并行执行,但是只有一个线程(或函数)处于正在运行的状态,其他线程(或函数)都处于暂停态(suspended),线程(或函数)之间可以交换执行权。也就是说,一个线程(或函数)执行到一半,可以暂停执行,将执行权交给另一个线程(或函数),等到稍后收回执行权的时候,再恢复执行。这种可以并行执行、交换执行权的线程(或函数),就称为协程。

从实现上看,在内存中,子例程只使用一个栈(stack),而协程是同时存在多个栈,但只有一个栈是在运行状态,也就是说,协程是以多占用内存为代价,实现多任务的并行。

(2)协程与普通线程的差异

不难看出,协程适合用于多任务运行的环境。在这个意义上,它与普通的线程很相似,都有自己的执行上下文、可以分享全局变量。它们的不同之处在于,同一时间可以有多个线程处于运行状态,但是运行的协程只能有一个,其他协程都处于暂停状态。此外,普通的线程是抢先式的,到底哪个线程优先得到资源,必须由运行环境决定,但是协程是合作式的,执行权由协程自己分配。

由于 JavaScript 是单线程语言,只能保持一个调用栈。引入协程以后,每个任务可以保持自己的调用栈。这样做的最大好处,就是抛出错误的时候,可以找到原始的调用栈。不至于像异步操作的回调函数那样,一旦出错,原始的调用栈早就结束。

Generator 函数是 ES6 对协程的实现,但属于不完全实现。Generator 函数被称为“半协程”(semi-coroutine),意思是只有 Generator 函数的调用者,才能将程序的执行权还给 Generator 函数。如果是完全执行的协程,任何函数都可以让暂停的协程继续执行。

如果将 Generator 函数当作协程,完全可以将多个需要互相协作的任务写成 Generator 函数,它们之间使用 yield 表示式交换控制权。

11. 应用(没看 :cry )

Generator 可以暂停函数执行,返回任意表达式的值。这种特点使得 Generator 有多种应用场景。

(1)异步操作的同步化表达

Generator 函数的暂停执行的效果,意味着可以把异步操作写在 yield 表达式里面,等到调用 next 方法时再往后执行。这实际上等同于不需要写回调函数了,因为异步操作的后续操作可以放在 yield 表达式下面,反正要等到调用 next 方法时再执行。所以,Generator 函数的一个重要实际意义就是用来处理异步操作,改写回调函数。

function* loadUI() {
showLoadingScreen();
yield loadUIDataAsynchronously();
hideLoadingScreen();
}
var loader = loadUI();
// 加载UI
loader.next()
// 卸载UI
loader.next()

上面代码中,第一次调用 loadUI 函数时,该函数不会执行,仅返回一个遍历器。下一次对该遍历器调用 next 方法,则会显示 Loading 界面( showLoadingScreen ),并且异步加载数据( loadUIDataAsynchronously )。等到数据加载完成,再一次使用 next 方法,则会隐藏 Loading 界面。可以看到,这种写法的好处是所有 Loading 界面的逻辑,都被封装在一个函数,按部就班非常清晰。

Ajax 是典型的异步操作,通过 Generator 函数部署 Ajax 操作,可以用同步的方式表达。

function* main() {
var result = yield request("http://some.url");
var resp = JSON.parse(result);
console.log(resp.value);
}
function request(url) {
makeAjaxCall(url, function(response){
it.next(response);
});
}
var it = main();
it.next();

上面代码的 main 函数,就是通过 Ajax 操作获取数据。可以看到,除了多了一个 yield ,它几乎与同步操作的写法完全一样。注意, makeAjaxCall 函数中的 next 方法,必须加上 response 参数,因为 yield 表达式,本身是没有值的,总是等于 undefined 。

下面是另一个例子,通过 Generator 函数逐行读取文本文件。

function* numbers() {
let file = new FileReader("numbers.txt");
try {
while(!file.eof) {
yield parseInt(file.readLine(), 10);
}
} finally {
file.close();
}
}

上面代码打开文本文件,使用 yield 表达式可以手动逐行读取文件。

(2)控制流管理

如果有一个多步操作非常耗时,采用回调函数,可能会写成下面这样。

step1(function (value1) {
step2(value1, function(value2) {
step3(value2, function(value3) {
step4(value3, function(value4) {
// Do something with value4
});
});
});
});

采用 Promise 改写上面的代码。

Promise.resolve(step1)
.then(step2)
.then(step3)
.then(step4)
.then(function(value4) {
// Do something with value4
}, function(error) {
// Handle any error from step1 through step4
}).done();

上面代码已经把回调函数,改成了直线执行的形式,但是加入了大量 Promise 的语法。Generator 函数可以进一步改善代码运行流程。

function* longRunningTask(value1) {
try {
var value2 = yield step1(value1);
var value3 = yield step2(value2);
var value4 = yield step3(value3);
var value5 = yield step4(value4);
// Do something with value4
} catch (e) {
// Handle any error from step1 through step4
}
}

然后,使用一个函数,按次序自动执行所有步骤。

scheduler(longRunningTask(initialValue));

function scheduler(task) {
var taskObj = task.next(task.value);
// 如果Generator函数未结束,就继续调用
if (!taskObj.done) {
task.value = taskObj.value
scheduler(task);
}
}

注意,上面这种做法,只适合同步操作,即所有的 task 都必须是同步的,不能有异步操作。因为这里的代码一得到返回值,就继续往下执行,没有判断异 步操作何时完成。如果要控制异步的操作流程,详见后面的《异步操作》一章。 下面,利用 for...of 循环会自动依次执行 yield 命令的特性,提供一种更一般的控制流管理的方法。

let steps = [step1Func, step2Func, step3Func];
function *iterateSteps(steps){
for (var i=0; i< steps.length; i++){
var step = steps[i];
yield step();
}
}

上面代码中,数组 steps 封装了一个任务的多个步骤,Generator 函数 iterateSteps 则是依次为这些步骤加上 yield 命令。 将任务分解成步骤之后,还可以将项目分解成多个依次执行的任务。

let jobs = [job1, job2, job3];
function* iterateJobs(jobs){
for (var i=0; i< jobs.length; i++){
var job = jobs[i];
yield* iterateSteps(job.steps);
}
}

上面代码中,数组 jobs 封装了一个项目的多个任务,Generator 函数 iterateJobs 则是依次为这些任务加上 yield* 命令

最后,就可以用 for...of 循环一次性依次执行所有任务的所有步骤。

for (var step of iterateJobs(jobs)){
console.log(step.id);
}

再次提醒,上面的做法只能用于所有步骤都是同步操作的情况,不能有异步操作的步骤。如果想要依次执行异步的步骤,必须使用后面的《异步操作》一章介绍的方法。 for...of 的本质是一个 while 循环,所以上面的代码实质上执行的是下面的逻辑。

var it = iterateJobs(jobs);
var res = it.next();
while (!res.done){
var result = res.value;
// ...
res = it.next();
}

(3)部署 Iterator 接口

利用 Generator 函数,可以在任意对象上部署 Iterator 接口。

function* iterEntries(obj) {
let keys = Object.keys(obj);
for (let i=0; i < keys.length; i++) {
let key = keys[i];
yield [key, obj[key]];
}
}
let myObj = { foo: 3, bar: 7 };
for (let [key, value] of iterEntries(myObj)) {
console.log(key, value);
}
// foo 3
// bar 7

上述代码中, myObj 是一个普通对象,通过 iterEntries 函数,就有了 Iterator 接口。也就是说,可以在任意对象上部署 next 方法。 下面是一个对数组部署 Iterator 接口的例子,尽管数组原生具有这个接口。

function* makeSimpleGenerator(array){
var nextIndex = 0;
while(nextIndex < array.length){
yield array[nextIndex++];
}
}
var gen = makeSimpleGenerator(['yo', 'ya']);
gen.next().value // 'yo'
gen.next().value // 'ya'
gen.next().done // true

(4)作为数据结构(没看 haha ing)

Generator 可以看作是数据结构,更确切地说,可以看作是一个数组结构,因为 Generator 函数可以返回一系列的值,这意味着它可以对任意表达式,提供类似数组的接口。

function *doStuff() {
yield fs.readFile.bind(null, 'hello.txt');
yield fs.readFile.bind(null, 'world.txt');
yield fs.readFile.bind(null, 'and-such.txt');
}

上面代码就是依次返回三个函数,但是由于使用了 Generator 函数,导致可以像处理数组那样,处理这三个返回的函数。

for (task of doStuff()) {
// task是一个函数,可以像回调函数那样使用它
}

实际上,如果用 ES5 表达,完全可以用数组模拟 Generator 的这种用法。

function doStuff() {
return [
fs.readFile.bind(null, 'hello.txt'),
fs.readFile.bind(null, 'world.txt'),
fs.readFile.bind(null, 'and-such.txt')
];
}

上面的函数,可以用一模一样的 for...of 循环处理!两相一比较,就不难看出 Generator 使得数据或者操作,具备了类似数组的接口。